Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Eur Respir J ; 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2235807

ABSTRACT

BACKGROUND: Autoimmunity has been reported in patients with severe COVID-19. We investigated whether antinuclear/extractable-nuclear antibodies (ANAs) were present up to a year after infection, and if they were associated with the development of clinically relevant Post-Acute Sequalae of COVID-19 (PASC) symptoms. METHODS: A rapid assessment line immunoassay was used to measure circulating levels of ANA/ENAs in 106 convalescent COVID-19 patients with varying acute phase severities at 3, 6, and 12 months post-recovery. Patient-reported fatigue, cough, and dyspnea were recorded at each timepoint. Multivariable logistic regression model and receiver-operating curves (ROC) were used to test the association of autoantibodies with patient-reported outcomes and pro-inflammatory cytokines. RESULTS: Compared to age- and sex-matched healthy controls (n=22) and those who had other respiratory infections (n=34), patients with COVID-19 had higher detectable ANAs at 3 months post-recovery (p<0.001). The mean number of ANA autoreactivities per individual decreased from 3 to 12 months (3.99 to 1.55) with persistent positive titers associated with fatigue, dyspnea, and cough severity. Antibodies to U1-snRNP and anti-SS-B/La were both positively associated with persistent symptoms of fatigue (p<0.028, AUC=0.86) and dyspnea (p<0.003, AUC=0.81). Pro-inflammatory cytokines such as tumour necrosis factor alpha (TNFα) and C-reactive protein predicted the elevated ANAs at 12 months. TNFα, D-dimer, and IL-1ß had the strongest association with symptoms at 12 months. Regression analysis showed TNFα predicted fatigue (ß=4.65, p=0.004) and general symptomaticity (ß=2.40, p=0.03) at 12 months. INTERPRETATION: Persistently positive ANAs at 12 months post-COVID are associated with persisting symptoms and inflammation (TNFα) in a subset of COVID-19 survivors. This finding indicates the need for further investigation into the role of autoimmunity in PASC.

2.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2023745

ABSTRACT

Discovery of the microbiota-gut-brain axis has led to proposed microbe-based therapeutic strategies in mental health, including the use of mood-altering bacterial species, termed psychobiotics. However, we still have limited understanding of the key signaling pathways engaged by specific organisms in modulating brain function, and evidence suggests that bacteria with broadly similar neuroactive and immunomodulatory actions can drive different behavioral outcomes. We sought to identify pathways distinguishing two psychoactive bacterial strains that seemingly engage similar gut-brain signaling pathways but have distinct effects on behaviour. We used RNAseq to identify mRNAs differentially expressed in the blood and hippocampus of mice following Lacticaseibacillus rhamnosus JB-1, and Limosilactobacillus reuteri 6475 treatment and performed Gene Set Enrichment Analysis (GSEA) to identify enrichment in pathway activity. L. rhamnosus, but not L. reuteri treatment altered several pathways in the blood and hippocampus, and the rhamnosus could be clearly distinguished based on mRNA profile. In particular, L. rhamnosus treatment modulated the activity of interferon signaling, JAK/STAT, and TNF-alpha via NF-KB pathways. Our results highlight that psychobiotics can induce complex changes in host gene expression, andin understanding these changes, we may help fine-tune selection of psychobiotics for treating mood disorders.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Affect , Animals , Brain/metabolism , Hippocampus , Male , Mice , Probiotics/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
JCI Insight ; 7(3)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1705325

ABSTRACT

BackgroundAdenovirus-vectored (Ad-vectored) vaccines are typically administered via i.m. injection to humans and are incapable of inducing respiratory mucosal immunity. However, aerosol delivery of Ad-vectored vaccines remains poorly characterized, and its ability to induce mucosal immunity in humans is unknown. This phase Ib trial evaluated the safety and immunogenicity of human serotype-5 Ad-vectored tuberculosis (TB) vaccine (AdHu5Ag85A) delivered to humans via inhaled aerosol or i.m. injection.MethodsThirty-one healthy, previously BCG-vaccinated adults were enrolled. AdHu5Ag85A was administered by single-dose aerosol using Aeroneb Solo Nebulizer or by i.m. injection. The study consisted of the low-dose (LD) aerosol, high-dose (HD) aerosol, and i.m. groups. The adverse events were assessed at various times after vaccination. Immunogenicity data were collected from the peripheral blood and bronchoalveolar lavage samples at baseline, as well as at select time points after vaccination.ResultsThe nebulized aerosol droplets were < 5.39 µm in size. Both LD and HD of AdHu5Ag85A administered by aerosol inhalation and i.m. injection were safe and well tolerated. Both aerosol doses, particularly LD, but not i.m., vaccination markedly induced airway tissue-resident memory CD4+ and CD8+ T cells of polyfunctionality. While as expected, i.m. vaccination induced Ag85A-specific T cell responses in the blood, the LD aerosol vaccination also elicited such T cells in the blood. Furthermore, the LD aerosol vaccination induced persisting transcriptional changes in alveolar macrophages.ConclusionInhaled aerosol delivery of Ad-vectored vaccine is a safe and superior way to elicit respiratory mucosal immunity. This study warrants further development of aerosol vaccine strategies against respiratory pathogens, including TB and COVID-19.Trial registrationClinicalTrial.gov, NCT02337270.FundingThe Canadian Institutes for Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada funded this work.


Subject(s)
Aerosols/pharmacology , COVID-19/prevention & control , SARS-CoV-2/drug effects , Tuberculosis Vaccines/immunology , Tuberculosis/prevention & control , Administration, Inhalation , Adolescent , Adult , Aerosols/administration & dosage , Antibodies, Neutralizing/blood , BCG Vaccine/immunology , COVID-19/immunology , Female , Humans , Immunity, Mucosal/drug effects , Immunity, Mucosal/immunology , Male , Middle Aged , Mycobacterium tuberculosis/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Tuberculosis/immunology , Vaccination/methods , Young Adult
4.
Eur Respir J ; 56(3)2020 09.
Article in English | MEDLINE | ID: covidwho-652283

ABSTRACT

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV, the agent responsible for the 2003 SARS outbreak, utilises angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) host molecules for viral entry. ACE2 and TMPRSS2 have recently been implicated in SARS-CoV-2 viral infection. Additional host molecules including ADAM17, cathepsin L, CD147 and GRP78 may also function as receptors for SARS-CoV-2.To determine the expression and in situ localisation of candidate SARS-CoV-2 receptors in the respiratory mucosa, we analysed gene expression datasets from airway epithelial cells of 515 healthy subjects, gene promoter activity analysis using the FANTOM5 dataset containing 120 distinct sample types, single cell RNA sequencing (scRNAseq) of 10 healthy subjects, proteomic datasets, immunoblots on multiple airway epithelial cell types, and immunohistochemistry on 98 human lung samples.We demonstrate absent to low ACE2 promoter activity in a variety of lung epithelial cell samples and low ACE2 gene expression in both microarray and scRNAseq datasets of epithelial cell populations. Consistent with gene expression, rare ACE2 protein expression was observed in the airway epithelium and alveoli of human lung, confirmed with proteomics. We present confirmatory evidence for the presence of TMPRSS2, CD147 and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa.Collectively, our data suggest the presence of a mechanism dynamically regulating ACE2 expression in human lung, perhaps in periods of SARS-CoV-2 infection, and also suggest that alternative receptors for SARS-CoV-2 exist to facilitate initial host cell infection.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections , Pandemics , Peptidyl-Dipeptidase A , Pneumonia, Viral , Serine Endopeptidases , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Endoplasmic Reticulum Chaperone BiP , Gene Expression , Gene Expression Profiling/methods , Humans , Lung/metabolism , Lung/virology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Receptors, Virus/classification , Receptors, Virus/genetics , Receptors, Virus/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL